Exponents and Logarithms

Exam Questions
Multiple Choice

1. If \(\log_2 x = 4 \), then \(\log_2 (2x) \) is equal to:

 a. 5
 b. 8
 c. 16
 d. 32

2. Identify the value of the \(x \)-intercept of the function \(y = \ln(x - 2) \).

 a. -1
 b. 0
 c. 2
 d. 3

3. Which equation is represented by the graph sketched below.

 a. \(y = \left(\frac{1}{2}\right)^{-x} \)
 b. \(y = \left(\frac{1}{2}\right)^{x} \)
 c. \(y = 2^{x} \)
 d. \(y = -2^{x} \)
4. The graph of \(y = \log_2(2x + 6) \) intersects the graph of \(y = 4 \) at:

- a. \(x = -1 \)
- b. \(x = 1 \)
- c. \(x = 5 \)
- d. \(x = 14 \)

5. The graph of \(y = \left(\frac{1}{2}\right)^x \) compared to the graph of \(x = \left(\frac{1}{2}\right)^y \) is a:

- a. reflection in the \(x \)-axis
- b. reflection in the \(y \)-axis
- c. reflection in the line \(y = x \)
- d. reciprocal function

6. The graph of the function \(f(x) \) shown below is best described by the equation:

- a. \(f(x) = 2^{x+3} \)
- b. \(f(x) = 2^x + 3 \)
- c. \(f(x) = 2^{x-3} \)
- d. \(f(x) = 2^x - 3 \)
7. Which of the following is a reasonable estimate for the value of $\log 350$?

a. 2 b. 2.5 c. 2.8 d. 3

8. Solve: $e^{\ln(5-x)} = 7$

a. -2 b. $-\ln 2$ c. $\ln 7 - \ln 5$ d. $\frac{7}{5}$

9. Simplify the following expression: $\frac{1}{2} \log_a 36 - \log_a 2$

a. $\log_a 3$ b. $\log_a 4$ c. $\log_a 9$ d. $\log_a 12$

10. Which of the following is closest to the value of $\log_2 40 + \log_5 125$?

a. 3 b. 8 c. 10 d. 45
11. The \(x \)-intercept of the graph of \(y = 3^x - 1 \) is:

a. -1 \quad b. 0 \quad c. 1 \quad d. 2

12. The expression \(2 \log x - \frac{1}{3} \log y \) as a single logarithm is:

\[\log \frac{x^2}{\sqrt[3]{y^3}} \]

a. \(\log \frac{x^2}{\sqrt[3]{y^3}} \) \quad b. \(\log \frac{2x}{3y} \) \quad c. \(-\log x^2 \sqrt[3]{y} \) \quad d. \(\log \left(x^2 - \sqrt[3]{y^3}\right) \)

13. Determine the value of \(\log_9 \left(\log_3 27 \right) \).

a. \(\frac{1}{3} \) \quad b. \(\frac{1}{2} \) \quad c. 2 \quad d. 3

14. Identify an equivalent expression for \(1 + \log_2 5 \).

a. \(\log_2 5 \) \quad b. \(\log_2 7 \) \quad c. \(\log_2 10 \) \quad d. \(\log_2 11 \)
15. Solve: \(7^{\log_7 2} = x \)

a. \(x = 1 \)
 b. \(x = 2 \)
 c. \(x = 7 \)
 d. \(x = 49 \)

16. Identify the logarithmic form of \(5^x = 6 \).

a. \(\log_5 x = 6 \)
 b. \(\log_5 6 = x \)
 c. \(\log_6 x = 5 \)
 d. \(\log_6 5 = x \)
Written Response

17. Given \(\log_b a = 3 \), give one example of possible values of \(a \) and \(b \) that make this equation true. (1 mark)

Solution

Answers will vary but \(b^3 = a \).

Some possible solutions are: \(a = 8, b = 2 \)

or

\(a = 27, b = 3 \)

or

\(a = 64, b = 4 \)

18. Frank tried to expand a logarithmic expression using the laws of logarithms. He made one error.

Frank’s solution:

\[\log_a \left(\frac{x + 2}{zw} \right) = \log_a x + \log_a 2 - \log_a z - \log_a w \]

Write the correct solution. (1 mark)

Solution

Correct solution:

\[\log_a \left(\frac{x + 2}{zw} \right) = \log_a (x + 2) - \log_a z - \log_a w \]

1 mark for correct solution

19. Estimate the value of \(\log_5 35 \).

Justify your answer. (1 mark)

Solution

\[5^2 = 25 \quad \quad \quad \quad 5^3 = 125 \]

The value of \(\log_5 35 \) is more than 2 but less than 2.5.

\(\frac{1}{2} \) mark for justification

\(\frac{1}{2} \) mark for estimated answer
20. Claire correctly solves the following equation:

\[\log_2(6-x) + \log_2(3-x) = 2. \]

She finds two possible values of \(x \): \(x = 2 \) and \(x = 7 \).
Identify which one of these values is unacceptable and explain why. (1 mark)

Solution

If \(x \) is greater than 3, you have a negative argument \(\therefore x = 2 \) but \(x \neq 7 \).

or

The domain is restricted to values of \(x < 3 \) \(\therefore x = 2 \).

1 mark for explanation

21. Which expression has a larger value?

\(\log_2 36 \) or \(\log_3 80 \)

Justify your answer. (1 mark)

Solution

Method 1

\[
\begin{align*}
\log_2 36 & = 2^\frac{2^5}{2} = 5.1 \\
\log_3 80 & = 3^\frac{3^3}{3^4} = 3.9
\end{align*}
\]

\(\therefore \log_2 36 \) is the larger value

1 mark for justification

22. Which of the following equations could be solved without the use of logarithms?

Without actually solving the problem, explain your choice. (1 mark)

\[4^x = 10^{3x+1} \]

or

\[\left(\frac{1}{3} \right)^{2x+1} = 27^{4x-1} \]

Solution

\(\left(\frac{1}{3} \right)^{2x+1} = 27^{4x-7} \) can be solved without the use of logarithms because \(\frac{1}{3} \) and 27 can both be changed to a base of 3.

1 mark for explanation
23. Using the laws of logarithms, expand:
\[\log_x \left(\frac{x \cdot y}{z} \right) \]
\[\log_x x + \log_x y - \log_x z \]
\[1 \text{ mark for product rule} \]
\[1 \text{ mark for quotient rule} \]
(2 marks)

24. Determine the \(x \)-intercept and \(y \)-intercept of \(y = \log_2 (x + 4) - 1 \).
(2 marks)

Solution

Substitute \(x \) with 0.
\[y = \log_2 4 - 1 \]
\[y = 2 - 1 \]
\[y = 1 \]
\[\therefore y \text{-intercept is 1} \]

Substitute \(y \) with 0.
\[0 = \log_2 (x + 4) - 1 \]
\[1 = \log_2 (x + 4) \]
\[2 = x + 4 \]
\[-2 = x \]
\[\therefore x \text{-intercept is } -2 \]

25. Solve the following equations algebraically:
\[\log_3 (x - 4) + \log_3 (x - 2) = 1 \]
(3 marks)

Solution

Method 1
\[\log_3 (x - 4) + \log_3 (x - 2) = 1 \]
\[\log_3 (x - 4)(x - 2) = 1 \]
\[3^1 = (x - 4)(x - 2) \]
\[3 = x^2 - 6x + 8 \]
\[0 = x^2 - 6x + 5 \]
\[0 = (x - 5)(x - 1) \]
\[x = 5 \]
\[x = 1 \]
\[\frac{1}{2} \text{ mark for solving for } x \text{ within a quadratic equation} \]
\[\frac{1}{2} \text{ mark for rejecting extraneous root} \]

3 marks
26. a. Sketch the graph of \(y = 3^x \).

Solutions

\[y = 3^x \]

\[(1, 3) \]

\[(0, 1) \]

b. Explain how the graph of \(y = 3^x \) can be used to sketch the graph of \(y = \log_3 x \).

(1 mark)

To graph \(y = \log_3 x \), you can reflect the graph of \(y = 3^x \) over the line \(y = x \).

or

You can switch the \(x \) and \(y \) coordinates of \(y = 3^x \) to get the graph of \(y = \log_3 x \).

1 mark for explanation
27. Determine the value of y in the following equation:

$$\log_x 27 - \log_x 3 = 2 \log_x y$$

Solution

$$\log_x 27 - \log_x 3 = 2 \log_x y$$

$$\log_x \frac{27}{3} = 2 \log_x y$$

$$\log_x 9 = \log_x y^2$$

$$9 = y^2$$

$$y = \pm 3$$

$$y = 3$$

3 marks

28. The number of times a website is visited can be modeled by the function:

$$A = 800 (e)^{rt}$$

where $A =$ the total number of visitors at time t

$t =$ the time in days ($t \geq 0$)

$r =$ the rate of growth

After 5 days, 40 000 people have visited the site. Determine the number of visitors expected after 9 days. Express your answer as a whole number. (calculator) (3 marks)

Solution

Method 1

$$40000 = 800 e^{5r}$$

$$\frac{40000}{800} = e^{5r}$$

$$\ln 50 = \ln e^{5r}$$

$$\ln 50 = 5r$$

$$\ln 50 = r$$

$$r = 0.782404601$$

$$A = 800 e^{(0.782404601)(9)}$$

$$A = 914610.103$$

$$A = 914610$$

3 marks
29. a. Sketch the graph of \(y = \ln(x) \). (2 marks)

Solutions

a)

\[
\begin{align*}
(1, 0) & \quad (e, 1)
\end{align*}
\]

- \(\frac{1}{2} \) mark for increasing logarithmic function
- \(\frac{1}{2} \) mark for \(x \)-intercept at \((1, 0)\)
- \(\frac{1}{2} \) mark for consistent point on logarithmic function
- \(\frac{1}{2} \) mark for vertical asymptotic behaviour

b. Sketch the graph of \(y = -\ln(x - 2) \). (2 marks)

b)

\[
\begin{align*}
(3, 0) & \quad (e + 2, -1)
\end{align*}
\]

- 1 mark for reflection in \(x \)-axis
- 1 mark for horizontal shift

2 marks
30. Solve algebraically: \[10^{3x} = 7^{x+5} \]
\[\text{(calculator)} \]
\[(3 \text{ marks}) \]

Solution

Method 1

\[10^{3x} = 7^{x+5} \]

\[\log_{10}^{3x} = \log_{7}^{x+5} \]
\[3x \log_{10} 10 = (x + 5) \log_{7} 7 \]
\[3x \log_{10} 10 = x \log_{7} 7 + 5 \log_{7} 7 \]

\[3x \log_{10} 10 - x \log_{7} 7 = 5 \log_{7} 7 \]

\[x = \frac{5 \log_{7} 7}{3 \log_{10} 10 - \log_{7} 7} \]
\[x = 1.960 \, 873 \]
\[x = 1.961 \]
\[\text{(3 marks)} \]

31. Jess invests $12,000 at a rate of 4.75% compounded monthly. How long will it take for Jess to triple her investment? Express your answer in years, correct to 3 decimal places.
\[\text{(calculator)} \]
\[(3 \text{ marks}) \]

Solution

Method 1

\[A = P \left(1 + \frac{r}{n}\right)^{nt} \]

\[36,000 = 12,000 \left(1 + \frac{0.0475}{12}\right)^{12t} \]
\[3 = \left(1 + \frac{0.0475}{12}\right)^{12t} \]

\[\ln 3 = \ln \left(1 + \frac{0.0475}{12}\right)^{12t} \]
\[\ln 3 = 12t \ln \left(1 + \frac{0.0475}{12}\right) \]
\[t = \frac{\ln 3}{12 \ln \left(1 + \frac{0.0475}{12}\right)} \]

\[t = 23.174 \, 425 \]
\[t = 23.174 \, \text{years} \]
\[\text{(3 marks)} \]
32. Solve the following equation:

\[2 \log_4 x - \log_4 (x + 3) = 1 \]

Solution

\[2 \log_4 x - \log_4 (x + 3) = 1 \]

\[\log_4 \left(\frac{x^2}{x + 3} \right) = 1 \]
1 mark for power rule
1 mark for quotient rule

\[4^1 = \left(\frac{x^2}{x + 3} \right) \]
1 mark for exponential form

\[4(x + 3) = x^2 \]
\[x^2 - 4x - 12 = 0 \]
\[(x - 6)(x + 2) = 0 \]
\[x = 6 \]
\[x \approx 2 \]
\[\frac{1}{2} \] mark for solving for \(x \)
\[\frac{1}{2} \] mark for rejecting extraneous root

4 marks

33. An earthquake in Vancouver had a magnitude of 6.3 on the Richter scale. An earthquake in Japan had a magnitude of 8.9 on the Richter scale. How many times more intense was the Japan earthquake than the Vancouver earthquake? You may use the formula below:

\[M = \log \left(\frac{A}{A_0} \right) \]

where \(M \) is the magnitude of the earthquake on the Richter scale
\(A \) is the intensity of the earthquake
\(A_0 \) is the intensity of a standard earthquake

Express your answer as a whole number.

Solution

Method 1

Vancouver: substitute \(M = 6.3 \)

\[6.3 = \log \left(\frac{A}{A_0} \right) \]

\[10^{6.3} = \frac{A}{A_0} \]

\[A = 10^{6.3} A_0 \]

Japan: substitute \(M = 8.9 \)

\[8.9 = \log \left(\frac{A}{A_0} \right) \]

\[10^{8.9} = \frac{A}{A_0} \]

\[A = 10^{8.9} A_0 \]

To compare the two earthquakes divide their intensities.

\[\frac{\text{the intensity of Japan}}{\text{the intensity of Vancouver}} = \frac{10^{8.9} A_0}{10^{6.3} A_0} = 10^{8.9 - 6.3} = 10^{2.6} \]

\[\approx 398 \]

1 mark for comparison

2 marks
34. a. Sketch the graph of \(f(x) = 3^x + 1 \). (2 marks)

Solution

\[a) \]

\[(0, 2) \]

\[(1, 4) \]

\[\frac{1}{2} \text{ mark for increasing exponential function} \]
\[\frac{1}{2} \text{ mark for } y\text{-intercept at } (0, 2) \]
\[\frac{1}{2} \text{ mark for asymptote at } y = 1 \]
\[\frac{1}{2} \text{ mark for consistent point on exponential function} \]

(2 marks)

b. Sketch the graph of \(f^{-1}(x) \). (1 mark)

\[b) \]

\[(2, 0) \]

\[(4, 1) \]

1 mark for consistent graph of the inverse

1 mark
35. Given \(\log_a 9 = 1.129 \) and \(\log_a 4 = 0.712 \), find the value of \(\log_a 12 \). (3 marks)

Solution

Method 1

\[
\log_a 9 = 1.129 \\
\log_a 3^2 = 1.129 \\
2 \log_a 3 = 1.129 \\
\log_a 3 = 0.5645 \\
\log_a 12 = \log_a (4 \cdot 3) \\
= \log_a 4 + \log_a 3 \\
= 0.712 + 0.5645 \\
= 1.2765 \\
= 1.277 \\
\]

1 mark for power rule

1 mark for writing 12 as a product

1 mark for product rule

3 marks

36. Solve the following equation: (4 marks)

\[
2 \log_2 (x-1) - \log_2 (x-5) = \log_2 (x+1)
\]

Method 3

\[
\log_2 (x-1)^2 - \log_2 (x-5) - \log_2 (x+1) = 0 \\
\log_2 \frac{(x-1)^2}{(x-5)(x+1)} = 0 \\
2^0 = \frac{(x-1)^2}{(x-5)(x+1)} \\
x^2 - 4x - 5 = x^2 - 2x + 1 \\
-6 = 2x \\
\therefore \text{no solution} \\
\]

2 marks for logarithmic rules (1 mark for power rule, 1 mark for quotient rule)

1 mark for exponential form

\(\frac{1}{2} \) mark for solving for \(x \)

\(\frac{1}{2} \) mark for no solution

4 marks
37. Determine how many monthly investments of $50 would have to be deposited into a savings account that pays 3% annual interest, compounded monthly, for the account’s future value to be $50,000.

Use the formula: \(FV = \frac{R[(1 + i)^n - 1]}{i} \)

where:
- \(FV \) = the future value
- \(R \) = the investment amount
- \(i \) = the annual interest rate
- \(n \) = the number of compounding periods per year

Express your answer as a whole number. (calculator) (3 marks)

Solution

\[
50 000 = \frac{50 \left(1 + \frac{0.03}{12} \right)^n - 1}{0.03/12}
\]

\[
50 000 = \frac{50 \left(1 + 0.0025\right)^n - 1}{0.0025}
\]

\[
50 000 = 20 000 \left(1.0025^n - 1\right)
\]

\[
2.5 = 1.0025^n - 1
\]

\[
3.5 = 1.0025^n
\]

\[
\log 3.5 = \log 1.0025^n
\]

\[
\log 3.5 = n \log 1.0025
\]

\[
n = \frac{\log 3.5}{\log 1.0025}
\]

\[
n = 501.73
\]

: 502 monthly investments are needed. (3 marks)
38. A population of 500 bacteria will triple in 20 hours. (calculator)

Using the formula given below,

\[A = Pe^{rt} \]

\(A \) = population after \(t \) hours
\(P \) = initial population
\(r \) = rate of growth
\(t \) = time in hours

a. Determine the rate of growth \(r \). (2 marks)

\[
\begin{align*}
1500 &= 500e^{20r} \\
3 &= e^{20r} \\
\ln 3 &= \ln e^{20r} \\
\ln 3 &= 20r \cdot \ln e \\
r &= \frac{\ln 3}{20} \\
r &= 0.054930614 \\
\end{align*}
\]

b. Determine how many hours it will take for the initial population to double with the same rate of growth. (2 marks)

\[
\begin{align*}
1000 &= 500e^{0.054930614t} \\
2 &= e^{0.054930614t} \\
\ln 2 &= \ln e^{0.054930614t} \\
\ln 2 &= 0.054930614t \cdot \ln e \\
t &= \frac{\ln 2}{0.054930614} \\
t &= 12.619 \text{ hours}
\end{align*}
\]
39. Sketch the graphs of:

a. \(y = \left(\frac{1}{4} \right)^x \)

\textbf{Solution}

\textbf{a)}

\[
\begin{array}{c}
\text{(1, 0.25)} \\
\text{(2, 0.0625)} \\
\text{(4, 0.016)}
\end{array}
\]

\text{1 mark for a vertical stretch by a factor of 2 of the graph consistent with a)}

b. \(y = 2 \left(\frac{1}{4} \right)^x \)

\text{1 mark for a vertical stretch by a factor of 2 of the graph consistent with a)}
40. Evaluate: \[
\frac{1}{2} \log_3 144 - \log_3 4 + 2 \log_3 3
\]

Solution

\[
\log_3 (144)^{\frac{1}{2}} - \log_3 4 + \log_3 (3)^2
\]

\[
\log_3 12 - \log_3 4 + \log_3 9
\]

\[
\log_3 \left(\frac{12 \cdot 9}{4} \right)
\]

\[
\log_3 27
\]

\[
3
\]

1 mark for power rule

½ mark for product rule

½ mark for quotient rule

1 mark for evaluating a logarithm

3 marks

41. Solve the following equation:

\[
\log_4 (x + 2) + \log_4 3 = \log_4 x
\]

Method 1

\[
\log_4 (x + 2) + \log_4 3 = \log_4 x
\]

\[
\log_4 (x + 2)^3 = \log_4 x
\]

\[
3(x + 2) = x
\]

\[
3x + 6 = x
\]

\[
x = -3
\]

No solution

1 mark for product rule

1 mark for equating arguments

½ mark for solving for \(x\)

½ mark for rejecting extraneous root

3 marks

Method 2

\[
\log_4 (x + 2) + \log_4 3 = \log_4 x
\]

\[
\log_4 (x + 2) + \log_4 3 - \log_4 x = 0
\]

\[
\log_4 \left(\frac{3(x + 2)}{x} \right) = 0
\]

\[
4^0 = \frac{3x + 6}{x}
\]

\[
x = -3
\]

\[
\checkmark
\]

1 mark for logarithmic rules (½ mark for product rule; ½ mark for quotient rule)

1 mark for exponential form

½ mark for solving for \(x\)

½ mark for rejecting extraneous root

3 marks
42. Identify which of these values is greater. Justify your answer.

\[\log_5 80 \quad \log_5 30 \]

Solution

\[5^2 = 25 \quad \log_5 80 \text{ is less than 3} \]
\[5^3 = 125 \]

\[3^2 = 27 \quad \log_3 30 \text{ is more than 3} \]
\[3^4 = 81 \]

\[\therefore \log_3 30 \text{ is greater} \]

1 mark for justification

1 mark

43. Solve:

\[2^{5x} = 3(5)^{x-3} \]

(calculator)

Solution

\[\log 2^{5x} = \log \left[3(5)^{x-3} \right] \]
\[5x \log 2 = \log 3 + (x - 3) \log 5 \]
\[5x \log 2 = \log 3 + x \log 5 - 3 \log 5 \]
\[5x \log 2 - x \log 5 = \log 3 - 3 \log 5 \]
\[x(5 \log 2 - \log 5) = \log 3 - 3 \log 5 \]
\[x = \frac{\log 3 - 3 \log 5}{5 \log 2 - \log 5} \]
\[x = -2.009 \]

½ mark for applying logarithms

1 mark for product rule

1 mark for power rule

½ mark for collecting like terms

½ mark for isolating x

½ mark for evaluating a quotient of logarithms

4 marks
44. A lake affected by acid rain has a pH of 4.4.
A person suffering from heartburn has a stomach acid of pH of 1.2.
The pH of a solution is defined as \(\text{pH} = -\log[H^+] \) where \([H^+]\) is the hydrogen ion concentration.
How many times greater is the hydrogen ion concentration of the stomach than that of the lake? Express your answer as a whole number. \(\text{calculator} \) \(2 \text{ marks} \)

\[
\begin{align*}
\text{Lake} & : 4.4 = -\log[H^+] \\
& : -4.4 = \log[H^+] \\
& : 10^{-4.4} = [H^+] \\
\text{Stomach} & : 1.2 = -\log[H^+] \\
& : -1.2 = \log[H^+] \\
& : 10^{-1.2} = [H^+] \\
\end{align*}
\]

\[\frac{[H^+]_{\text{stomach}}}{[H^+]_{\text{lake}}} = \frac{10^{-1.2}}{10^{-4.4}} = 10^{3.2} = 1585 \]

45. Solve: \(2\log_4 x - \log_4 (x + 3) = 1 \) \(4 \text{ marks} \)

Solution

\[
\begin{align*}
2\log_4 x - \log_4 (x + 3) & = 1 \\
\log_4 \left(\frac{x^2}{x + 3} \right) & = 1 \\
4^1 & = \frac{x^2}{x + 3} \\
4x + 12 & = x^2 \\
x^2 - 4x - 12 & = 0 \\
(x - 6)(x + 2) & = 0 \\
x & = 6 \\
\end{align*}
\]

\(\frac{1}{2} \text{ mark for solving for } x \) \(\frac{1}{2} \text{ mark for rejecting extraneous root} \) \(4 \text{ marks} \)
46. a. Sketch the graph of \(f(x) = \log_5(x - 1) \). (2 marks)

Solution

a) ![Graph of \(f(x) = \log_5(x - 1) \) with points and asymptote marked.]

\(\frac{1}{2} \) mark for vertical asymptote at \(x = 1 \)
\(\frac{1}{2} \) mark for \(x \)-intercept at \(x = 2 \)
\(\frac{1}{2} \) mark for increasing logarithmic function
\(\frac{1}{2} \) mark for consistent point on the logarithmic graph

2 marks

b. Sketch the graph of \(f^{-1}(x) \). (1 mark)

b) ![Graph of the inverse function \(f^{-1}(x) \) with point and domain marked.]

1 mark for the graph of the inverse function consistent with a)
47. Kim solved the following logarithmic equation:

\[
\log_2 \left(\frac{-x}{3} \right) = \log_2 (x - 4)
\]

\[
-\frac{x}{3} = x - 4
\]

\[
-x = 3x - 12
\]

\[
-4x = -12
\]

\[
x = 3
\]

Explain why \(x = 3\) is an extraneous root. (1 mark)

Solution

\(x = 3\) is an extraneous solution because the argument in a logarithmic equation cannot be negative.

48. Solve: \(6(5)^{3x+2} = 9^{2-x}\) (calculator) (4 marks)

Solution:

\[
\log[6(5)^{3x+2}] = \log 9^{2-x}
\]

\[
\log 6 + \log 5^{3x+2} = \log 9^{2-x}
\]

\[
\log 6 + (3x + 2) \log 5 = (2 - x) \log 9
\]

\[
\log 6 + 3x \log 5 + 2 \log 5 = 2 \log 9 - x \log 9
\]

\[
3x \log 5 + x \log 9 = 2 \log 9 - 2 \log 5 - \log 6
\]

\[
x(3 \log 5 + \log 9) = 2 \log 9 - 2 \log 5 - \log 6
\]

\[
x = \frac{2 \log 9 - 2 \log 5 - \log 6}{3 \log 5 + \log 9}
\]

\[
x = -0.088
\]
49. Evaluate: \(\log_4 2 \)

Solution:
\[
\frac{1}{2}
\]

50. Estimate the value of \(\log_2 5 \). Justify your answer.

Solution:
\[
\log_2 4 = 2 \\
\log_2 8 = 3 \\
\text{therefore } \log_2 5 \approx 2.3
\]

51. Sketch the graph of \(f(x) = 3 \log_2 (x + 1) \).

[Graph of \(f(x) = 3 \log_2 (x + 1) \)]
52. Solve: \[4 \log_3 2 - \frac{1}{3} \log_3 8 = \log_3 a \] (3 marks)

Solution:
\[
\log_3 2^4 - \log_3 8^{\frac{1}{3}} = \log_3 a \\
\log_3 16 - \log_2 2 = \log_3 a \\
\log_3 \left(\frac{16}{2} \right) = \log_3 a \\
\log_3 8 = \log_3 a \\
a = 8
\]

53. Use the law of logarithms, fully expand the expression: \[\log_a \left(\frac{x^3}{y\sqrt{z}} \right) \] (3 marks)

Solution:
\[
\log_a \left(\frac{x^3}{y\sqrt{z}} \right) = \log_a x^3 - \log_a y - \log_a z^{\frac{1}{2}} \\
= 3 \log_a x - \log_a y - \frac{1}{2} \log_a z
\]

54. Given \(f(x) = 2^x + 1 \), state the equation of the horizontal asymptote. (1 mark)

Solution:
\[y = 1 \]
55. Sheeva’s bank is lending her $50 000 at an annual interest rate of 6%, compounded monthly, to purchase a car. Given that the last payment will be a partial payment, determine how many full monthly payments of $800 Sheeva will have to make.

The formula below may be used.

\[PV = \frac{R[1-(1+i)^{-n}]}{i} \]

where
- \(PV \) = the present value of the amount borrowed
- \(R \) = the amount of each periodic payment
- \(i \) = \(\frac{\text{annual interest rate (as a decimal)}}{\text{the number of compounding periods per year}} \)
- \(n \) = the number of equal periodic payments.

Express your answer as a whole number.

(3 marks)

Solution

\[50000 = \frac{800[1-(1+\frac{0.06}{12})^{-n}]}{\frac{0.06}{12}} \]

\[250 = 800[1-(1+0.005)^{-n}] \]

\[0.3125 = 1-(1+0.005)^{-n} \]

\[0.0675 = -1.005^{-n} \]

\[0.6875 = 1.005^{-n} \]

\[\log 0.6875 = -n \log 1.005 \]

\[\frac{\log 0.6875}{-\log 1.005} = n \]

\[75.12588088 = n \]

\[\therefore \ 75 \text{ full monthly payments are needed} \]

3 marks
56. Using the laws of logarithms, fully expand the expression:
\[
\log \left(\frac{w^3 x}{y - 1} \right)
\]

Solution

\[
3 \log_2 w + \log_2 x - \log_2 (y - 1)
\]

1 mark for power law
1 mark for product law
1 mark for quotient law

3 marks

57. Solve the following equation:
\[
\log_3 (x + 3) + \log_3 (x - 5) = 2
\]

Solution

\[
\log_3 [(x + 3)(x - 5)] = 2
\]

1 mark for product law
1 mark for exponential form

\[
(x + 3)(x - 5) = 3^2
\]

\[
x^2 - 2x - 15 = 9
\]

\[
x^2 - 2x - 24 = 0
\]

\[
(x - 6)(x + 4) = 0
\]

\[
x = 6 \quad x = -4
\]

\(\frac{1}{2}\) mark for solving for \(x\)
\(\frac{1}{2}\) mark for rejecting extraneous root

3 marks
58. Solve: \[9^{2x+1} = 27^x\] (3 marks)

Solution

\[3^{2(2x+1)} = 3^{3x}\]

1 mark for changing to a common base

\[3^{4x+2} = 3^{3x}\]

1 mark for exponent law (½ mark for each side)

\[4x + 2 = 3x\]

½ mark for equating exponents

\[x = -2\]

½ mark for solving for \(x\)

3 marks

59. Expand using the laws of logarithms. (2 marks)

\[\log\left(\frac{a}{b^4}\right)\]

Solution

\[\log a - \log b^4\]

1 mark for quotient law

\[\log a - 4 \log b\]

1 mark for power law

2 marks
60. Peter invests $560 per month at an annual interest rate of 4.2%, compounded monthly. Determine how many monthly investments he will need to make to obtain at least $500 000. Express your answer as a whole number. (calculator) (3 marks)

Use the formula:

\[FV = \frac{R[(1 + i)^n - 1]}{i} \]

where \(FV \) = the future value
\(R \) = the investment amount each period
\(i \) = the annual amount each period
\(n \) = the number of compounding periods per year
\(n \) = the number of investments

Solution

\[
500 \, 000 = \frac{560 \left[\left(1 + \frac{0.042}{12} \right)^n - 1 \right]}{\frac{0.042}{12}}
\]

\[
500 \, 000 = \frac{560 \left(1 + 0.0035 \right)^n - 1}{0.0035}
\]

\[
500 \, 000 = 160 \, 000 \left(1.0035^n - 1\right)
\]

\[
3.125 = 1.0035^n - 1
\]

\[
4.125 = 1.0035^n
\]

\[
\log 4.125 = \log 1.0035^n
\]

\[
\log 4.125 = n \log 1.0035
\]

\[
n = \frac{\log 4.125}{\log 1.0035}
\]

\[
n = 405.584
\]

\[\therefore\] 406 monthly investments are needed.
61. Solve the following equation algebraically:

\[
\log\left(\frac{x^2 + 5}{x^2 + 1}\right) = \log 3
\]

Solution

\[
\log\left(\frac{x^2 + 5}{x^2 + 1}\right) = \log 3
\]

1 mark for quotient law

\[
\frac{x^2 + 5}{x^2 + 1} = 3
\]

½ mark for equating arguments

\[
x^2 + 5 = 3(x^2 + 1)
\]

\[
x^2 + 5 = 3x^2 + 3
\]

\[
x^2 = 2
\]

\[
x = \pm1
\]

½ mark for solving for \(x\)

62. Justify why 4.7 is a better estimate than 4.3 for the value of \(\log_2 26\).

Solution

\[
2^4 = 16 \quad 2^5 = 32
\]

or

\[
\log_2 16 = 4 \quad \log_2 32 = 5
\]

26 is closer to 32 than 16; therefore \(\log_2 26\) is closer to 5 than 4.
63. Sketch the graph of \(y = -2^x + 2 \). (3 marks)

Solution

![Graph of \(y = -2^x + 2 \)](image)

1 mark for shape of an exponential function
1 mark for vertical reflection
1 mark for asymptotic behaviour approaching \(y = 2 \)

64. Explain why the domain of \(y = \log_2 (x - 1) \) is \(x > 1 \). (1 mark)

Solution

The argument of a logarithmic function must be positive. 1 mark
65. If \(\log 6 = p \), \(\log 5 = r \) and \(\log 2 = q \), express \(\log 60 \) in terms of \(p \), \(q \), and \(r \).

(2 marks)

Solution

\[
\log 60 = \log(6 \cdot 5 \cdot 2) \\
= \log 6 + \log 5 + \log 2 \\
= p + r + q
\]